Leyes de Kepler - Ejercicios Resueltos
¡¡Buen día lectores!!, hace algún tiempo publicamos sobre el tema de la gravitación universal y resolvimos ejercicios que hicieron que comprendiéramos mucho mejor el tema de la atracción gravitatoria entre los planetas, pues bien hasta ahí todo bien. Pero para profundizar mejor el tema, tenemos que retroceder un poco al tiempo, es decir, mucho más antes de la aparición de las leyes de Newton, y nos remontemos al estudio de los planetas y sus movimientos, para conocer a fondo las Leyes de Kepler. Así que toma asiento, y prepárate para entender la breve historia y a resolver ejercicios. 👌
Empecemos hablando del astrónomo Johannes Kepler (1571-1630) , Kepler fue un grandioso y brillante astrónomo alemán, que aprendió de las enseñanzas tanto de Nicolás Copérnico como de Tycho Brahe, tanto que le causó demasiado interés en conocer como se movían los planetas alrededor del Sol, y que después de una tediosa investigación pudo confirmar que los plantes no se movían en forma circular, sino que se movían describiendo órbitas elípticas. Las cuales le permitió establecer varios enunciados matemáticos, relacionados con el sistema solar, y así poder formular tres leyes sobre el movimiento de los planetas, conocidos como las leyes de Kepler.
No obstante, miles de años atrás ya había mucho estudio referente al movimiento de los planetas y las estrellas. Por ejemplo en el siglo II d.C, el griego Claudio Ptolomeo había postulado la teoría de que la tierra era el centro del universo, esto paso a ser el famoso modelo geocéntrico, tiempo después a mediados del siglo XIV y comienzos del siglo XV el astrónomo Nicolás Copérnico fue capaz de demostrar que los planetas incluida la tierra en realidad se movían en órbitas circulares al rededor del Sol. Aunque ésto carecía de precisión tuvo que llegar el astrónomo danés Tycho Brahe donde perfeccionó las mediciones sobre el movimiento de los planetas. Pues para ese entonces el telescopio no se había descubierto.
Bien, pasemos a conocer las Leyes de Kepler.
Primera Ley de Kepler
La primera ley de Kepler o también llamada como la ley de órbitas, señala lo siguiente: Los planetas se mueven en órbitas elípticas, con el Sol en uno de los puntos focales. Veamos la siguiente imagen que describe el primer enunciado.
El punto de la órbita más cercano al Sol se le conoce como perihelio y el punto más lejano se le llama afelio, las elipses poseen una forma ovalada o de círculo aplanado, el ancho de ese círculo achatado se le conoce como "excentricidad", la parte que está sobre el eje "x" se le llama eje mayor, y del eje "y" se le conoce como eje menor.
Segunda Ley de Kepler
La segunda ley de Kepler o también llamada como la ley de áreas , es aquella ley que enuncia lo siguiente; Una linea del Sol a un planeta barre áreas iguales en lapsos de tiempo iguales. Veamos la imagen que lo describe mejor.
Esta ley nos indica que la rapidez orbital de un planeta varía en diferentes punto de su órbita. Debido a que la órbita del planeta es elíptica, su rapidez orbital es mayor cuando está más cerca del Sol que cuando está más lejos. Curiosamente Newton más tarde demostró que esto era consecuencia de su ley de la gravitación universal.
Tercera Ley de Kepler
La tercera ley de Kepler o también conocida como la ley de periodos , es una ley que establece que el cuadrado del periodo orbital de un planeta es directamente proporcional al cubo de la distancia promedio entre el planeta y el Sol; es decir que:
Es fácil deducir la fórmula de la tercera ley de Kepler, a partir de la ley gravitacional de Newton, e igualando con la fuerza centrípeta que proviene de la fuerza de gravedad. Teniendo en cuenta esto, entonces decimos que:
Fuerza Centrípeta = Fuerza Gravitacional
Entonces:
Dónde:
mp = Masa del Planeta
Ms = Masa del Sol
r = distancia
G = constante gravitacional
Despejando a la velocidad "v", tenemos que:
Pero como la velocidad es distancia sobre tiempo, y podemos interpretarla como la distancia del círculo (2πr) sobre el Periodo (tiempo que tarda en dar la vuelta).
Vamos a despejar al periodo "T"
Elevando al cuadrado ambos miembros, tenemos que:
Dejando fuera a r^3, tenemos que:
De aquí podemos tomar a lo siguiente como una constante, la constante de Kepler:
Podemos incluso, reescribir nuestra fórmula de la siguiente manera:
Ejercicios Resueltos de la Ley de Kepler
Para centrarnos en los ejercicios, tomaremos la fórmula de la tercera ley de Kepler que nos servirá para calcular ciertos datos, veamos entonces un ejemplo.
Ejemplo 1.- El planeta tierra posee un satélite natural llamado "Luna", Puesto que la luna se encuentra a una distancia promedio de 384,400 km de la tierra, y tiene un periodo orbital de 27 días, calcule la masa de la tierra.
Solución.
El problema nos proporciona algunos datos importantes como la distancia "r" y el valor del periodo "T", por lo que podemos calcular el valor de Kt, esto sería en unidades del Sistema Internacional, así que veamos:
Procedemos entonces al cálculo de K
De ahí tenemos que:
Entonces, podemos despejar de la fórmula de Kepler para la masa de la tierra:
De aquí despejamos a Mt
Entonces, la masa de la tierra es:
Vendría a ser un aproximado, pero sería la manera correcta de realizar el cálculo de la masa de la tierra.
Conclusión
Johanes Kepler fue un gran astrónomo, que con gran precisión trabajó la parte cinemática del sistema solar, aunque sin llegar a una explicación dinámica del mismo, es decir, cuáles fueron las causas que originan dichos movimientos. Sin embargo, la contribución a la astronomía es digna de elogio pues su investigación se llevó a cabo cuando aún no se había inventado el telescopio.
-
Como se saco ^24 en la tercera ley de kepler?
-
multiplicando 4 pi al cuadrado por el inverso de (6.67 `^ -11 por 90581x 10^`-14)
-
Si usas una calculadora, al colocar el signo de dividir deberías abrir un paréntesis y recién escribir el producto del denominador, cerrar el paréntesis y presionar el igual. Si haces eso vas a obtener el resultado por el cual preguntas. Suerte!!
Con esto quiero decir que estás usando mal tu calculadora. -
necesito ayuda con un problema : Sabiendo que la distancia entre el sol y la tierra, en el perihelio es de 0,983 unidades astronómicas, ¿ que tiempo tardara la luz solar en la llegada de la tierra cuando esta se localiza en el perihelio?
-
Yo tengo un problema tengo que buscar Cuánto tarda saturno en darle una vuelta al sol. Alguien me podría ayudar por favor yo no sé cómo hacerle. Gracias por su atención
-
si consideran el valor medio de K =3.1E-19 para la órbita de saturno alrededor del sol, y sabiendo que la distancia media de saturno al sol es de D= 1.418E12 m, entonces T^2=KD^3
T=RAIZ.CUAD(K D^3)= RAIZ.CUAD([3.1E-19][1.48E12]^3) = 9.4 E8 Segundos
esto lo pasas a medidas más comunes.T= 29.81 años
-
-
El periodo de la órbita de la Tierra es aproximadamente de 365.25 días. Con esta información y la tercera ley de Kepler, calcule la longitud del eje mayor de la órbita terrestre. Necesita la masa del Sol, M=1,99x10e30 kg y la constante gravitacional G=6,67x10e-11 N*m^2/kg^2.
NECESITO AYUDA POR FAVOR:( -
El periodo de la órbita de la Tierra es aproximadamente de 365.25 días. Con esta información y la tercera ley de Kepler, calcule la longitud del eje mayor de la órbita terrestre. Necesita la masa del Sol, M=1,99x10e30 kg y la constante gravitacional G=6,67x10e-11 N*m^2/kg^2.
-
Si la distancia media del sol a la tierra es de (149,597,870 km) y la constante de Kepler para el sistema solar vale k=3〖.10〗^(-19) s^2/m^3. Haciendo uso de la tercera ley de Kepler demuestre que el periodo que la tierra orbita al sol es aproximadamente 365 días
ayudaaaaaaaaaaaaaaa
-
Usa esta formula. T^2=k.r^3
Debes convertir el valor de r, que esta en km a metros. Con esto el periodo (T) quedara es segundos, por lo que luego debes convertir a días. el valor resultante es 366 días aproximadamente -
Cómo puedo realizar ejercicios de la primera ley de kepler
-
Cuáles serían los ejercicios de la primera ley de kepler
-
Muy buenos articulos. Ahora bien, es posible despejar tiempo a partit de la 2 ley?
-
Que es GME?en las leyes de Kepler?
14 Comentarios Publicados
Deja una respuesta
Temas que podrían interesarte 👇