Segunda Ley de la Termodinámica - Ejercicios Resueltos

eficienciatermica

¡Buenas amigos! tiene días que no publico un post, pero es porque estamos trabajando en grandes cosas para este sitio así como en otros de la misma índole, así que no te preocupes y si ya eres un suscriptor más, dentro de poco recibirás buenas noticias 😎

En esta ocasión vengo con un post muy entretenido e interesante en el mundo de la física, así que presta mucha atención si quieres aprender, consultar o simplemente reafirmar tus conocimientos de este tema, ya que veremos algunos ejercicios resueltos y de que forma entender por completo la segunda ley de la termodinámica.

Índice de Contenido
  1. ? ¿Qué nos dice la segunda ley de la termodinámica?
  2. ? El estudio de las Máquinas Térmicas
  3. ? Fórmula de la Segunda Ley de la Termodinámica
  4. ? Ejercicios Resueltos de eficiencia de máquinas térmicas
  5. ? Ejercicios para practicar de la Segunda Ley de la Termodinámica

? ¿Qué nos dice la segunda ley de la termodinámica?

Antes de entrar a fondo con la segunda ley de la termodinámica, en la primera ley de la termodinámica se explica que la energía no se crea ni se destruye, solo se transforma. La segunda ley, sin embargo es probablemente la más conocida y de caso de estudio más profundo, ya que describe incluso los límites del universo, así como también nos advierte que el tiempo sigue una flecha de sola una dirección y que nuestro universo tiene un destino desolador y catastrófico.

Pero bien, esto puede resultar un poco confuso y quizá no logres captarlo a la primera, así que voy a intentar explicarlo de una manera concisa para comprender esta ley.

La segunda ley de la termodinámica nos dice que:

 Cuando ocurre un proceso termodinámico, este ocurre en una sola dirección con respecto al tiempo, pero no viceversa.

Es decir, que por ejemplo; si aventamos un vaso de cristal al suelo, este objeto "se romperá" y se dispersará en fragmentos sobre todo el piso, entonces aquí viene la pregunta. ¿Es posible qué de forma natural los fragmentos se reconstruyan nuevamente a la forma original que tenía antes el vaso?, es lógico que la respuesta sea NO, ya que se trata de un fenómeno irreversible, entonces aquí es donde viene el concepto y estudio de la segunda ley 🙂

Otra forma de encontrarla es mediante una definición similar a la siguiente:

 Es imposible convertir completamente un tipo de energía a otro, sin que este cause pérdidas en el proceso.

Esto es algo que en su momento podría parecer ilógico, pero si se analiza delicadamente podremos tener una respuesta más teórica y entendible del tema, en algunos casos nos toparemos con la definición de que, "la cantidad de entropía en el universo tiende a incrementarse con el tiempo".

Pero... ¿Qué es entropía? Pues bien, la entropía no es más que aquella cantidad de energía que no se puede aprovechar para producir un trabajo. Así también nos explica que se trata de un desorden total de las moléculas que esto complementa.

Por ejemplo; el universo constantemente se expande y por su desorden considerablemente va aumentando su entropía, hasta quedar sin energía necesaria para seguir transformándose, cuando ese momento llegue, todos los cuerpos alcanzarán un equilibrio térmico, de tal manera que sería el fin del universo entero.

curioso ¿no?

? El estudio de las Máquinas Térmicas

A pesar de estas ideas y teorías que quizá un poco confusas para las personas que no eran científicos en ese tiempo, el avance de la termodinámica se formuló en un momento de gran optimismo tecnológico, con la llegada de la revolución industrial.

Ejemplo de máquina térmica

En la mitad del siglo 19, los físicos e ingenieros estaban construyendo máquinas de vapor para mecanizar el trabajo y el transporte y estaban tratando de encontrar la manera de hacerlos más potentes y eficientes. Grandes científicos como Clausius, Kelvin, Joule contribuyeron en gran medida, aunque en cierta parte se le considera como padre de esta disciplina al físico francés Sadi Carnot .

Carnot demostró que se podía predecir la eficiencia máxima teórica de un motor de vapor mediante la medición de la diferencia de temperaturas del vapor en el interior del cilindro y la del aire que lo rodea, conocida en términos termodinámicos como los depósitos de agua caliente y fría de un sistema, respectivamente.

Funcionamiento de una máquina térmica

? Fórmula de la Segunda Ley de la Termodinámica

Como se comentó texto atrás, "Es imposible construir una máquina térmica que transforme en su totalidad el calor en energía y viceversa".

La Eficiencia de una máquina térmica es la relación entre el trabajo mecánico producido y el calor suministrado. Y podemos encontrarla de diversas formas:

Fórmula de eficiencia térmica

Dónde:

$\displaystyle W=$ Trabajo Mecánico [Cal, Joules]

$\displaystyle Q=$ Calor suministrado a la máquina por el combustible en calorías (cal) o en Joules (J)

$\displaystyle \eta $ = Eficiencia de la máquina térmica

También la podemos encontrar de la siguiente manera:

Fórmula de la segunda ley de la termodinamica

Dónde:

$\displaystyle {{Q}_{1}}=$ Calor Suministrado [Cal, Joules]

$\displaystyle {{Q}_{2}}=$ Calor Obtenido [Cal, Joules]

La eficiencia de una máquina térmica  se puede calcular también en función de la relación que hay entre la temperatura de la fuente caliente (T1) y la fuente fría (T2), ambas medidas en temperaturas absolutas, es decir, en grados Kelvin (K) dónde:

fórmula de la segunda ley de la termodinámica

? Ejercicios Resueltos de eficiencia de máquinas térmicas

Veamos algunos ejemplos de la segunda ley de la termodinámica o de máquinas térmicas para comprender mejor el tema 😀

Problema 1.- Cuál es la eficiencia de una máquina térmica a la cual se le suministrarán 8 000 calorías para obtener 25 200 Joules de calor de salida?

Solución: 

Sin duda el problema es muy fácil de resolver, pero antes de poder realizar el cálculo en la fórmula, tenemos que convertir las calorías en Joules, y nos referimos a las calorías que se suministran:

$\displaystyle {{Q}_{1}}=8000cal\left( \frac{4.2J}{1cal} \right)=33600J$

Ahora si podemos sustituir nuestros datos en la fórmula:

$\displaystyle \eta =1-\frac{{{Q}_{2}}}{{{Q}_{1}}}$

Sustituyendo nuestros datos:

$\displaystyle \eta =1-\frac{{{Q}_{2}}}{{{Q}_{1}}}=1-\frac{25200J}{33600J}=1-0.75$

$\displaystyle \eta =1-0.75=0.25$

El valor de 0.25 lo multiplicamos por 100, para obtener el porcentaje de la eficiencia térmica:

$\displaystyle \eta =100\left( 0.25 \right)=25%$

Lo que sería equivalente a un 25% de eficiencia térmica

Problema 2.- Calcular la eficiencia de una máquina térmica a la cual se le suministran 5.8 x 10^8 cal, realizando un trabajo de 8.3 x10^7 J.

Solución: 

Vamos a utilizar nuestros datos de la siguiente manera:

$\displaystyle {{Q}_{1}}=5.8x{{10}^{8}}cal$ (Calor suministrado a la máquina)

$\displaystyle W=8.3x{{10}^{7}}J$ (Trabajo realizado por la máquina)

Convertimos las calorías en Joules, haciendo este pequeño factor de conversión 1 Cal = 4.2 J/Cal , de tal manera que ahora $latex \displaystyle {{Q}_{1}}$ , tendrá el siguiente valor:

$\displaystyle {{Q}_{1}}=5.8x{{10}^{8}}cal\left( 4.2\frac{J}{cal} \right)=2.436x{{10}^{9}}J$

Sustituyendo en la fórmula, tendremos:

$\displaystyle \eta =\frac{W}{Q}$

$\displaystyle \eta =\frac{8.3x{{10}^{7}}J}{2.436x{{10}^{9}}J}=0.034$

que multiplicado por 100, tendríamos

$\displaystyle \eta =100\left( 0.034 \right)=3.4%$

Haciendo un total del 3.4% de eficiencia térmica, bajo esas condiciones.

Ahora veamos otro ejemplo de análisis.

Problema 3.- Suponga que una persona le comenta que construyó una máquina térmica la cual, en cada ciclo, recibe 100 cal de la fuente caliente y realiza un trabajo de 420 J. Sabiendo que 1 cal = 4.2 J. ¿Qué puede opinar al respecto?

Solución: 

Si la máquina recibe 100 cal de la fuente caliente quiere decir que:

$\displaystyle Q=100cal\cdot \left( \frac{4.2J}{1cal} \right)=420J$

Ahora por fórmula tenemos:

$\displaystyle \eta =\frac{W}{Q}=\frac{420J}{420J}=1$

que multiplicado por 100, tenemos

$\displaystyle e=1\cdot 100=100%$

Por lo que nuestra respuesta tendrá que ser, que eso es imposible ya que viola la segunda ley de la termodinámica, al decir que una máquina no puede realizar una eficiencia de 100%, puesto que al realizar algún trabajo la energía tiene que disiparse de alguna forma o transformarse en otra cosa.

Problema 4.- Una máquina térmica teórica opera entre dos fuentes termales, ejecutando el ciclo de Carnot. La fuente fría se encuentra a 127 °C y la fuente caliente, a 427 ° C. ¿Cuál es el rendimiento porcentual de esa máquina?  

Solución:

Si observamos bien el problema, en este solamente contamos con las temperaturas, pero no contamos con otro tipo de dato. Si leemos muy bien el tema nos daremos cuenta que podemos usar la fórmula de la eficiencia térmica en términos de las temperaturas. Pero primero debemos de convertir las temperaturas en absolutas.

$\displaystyle {{T}_{1}}=427{}^\circ C+273=700K$

$\displaystyle {{T}_{2}}=127{}^\circ C+273=400K$

Aplicando la fórmula de la eficiencia:

$\displaystyle \eta =1-\frac{{{T}_{2}}}{{{T}_{1}}}$

Sustituyendo nuestros datos en la fórmula:

$\displaystyle \eta =1-\frac{400K}{700K}=1-0.57=0.43$

Multiplicando por 100, para convertirlo en porcentaje

$\displaystyle \eta =100\left( 0.43 \right)=43%$

Por lo que la eficiencia es de 43%

? Ejercicios para practicar de la Segunda Ley de la Termodinámica

Ahora es momento de practicar con algunos ejemplos de la segunda ley de la termodinámica, o de máquinas térmicas. Le comentamos que estos ejercicios vienen con la solución paso a paso para corroborar sus resultados ??

 Problema 5.- ¿Cuál es la eficiencia de una máquina térmica a la que se le suministran 7x10⁴ calorías de las cuales 2x10⁴ se pierden por transferencia de calor al ambiente? Calcular también la cantidad de trabajo producida en Joules. 

Problema de la segunda ley de la termodinámica

Ver Solución

Problema 6.- En una máquina térmica se emplea vapor producido por la caldera a 230°C, mismo que después de ser utilizado para realizar trabajo es expulsado al ambiente a una temperatura de 102°C. Calcular la eficiencia máxima de la máquina expresada en porcentaje 

ejercicio de la segunda ley de la termodinámica

Ver Solución

 Problema 7.- Determinar la temperatura en °C de la fuente fría en una máquina térmica cuya eficiencia es del 36% y la temperatura en la fuente caliente es de 310°C 

problemas de la segunda ley de la termodinámica

Ver Solución

Carlos Julián

Carlos Julián es el fundador de Fisimat, es Ingeniero Mecatrónico, Profesor y Programador, cuenta con una Maestria en Ciencias de la Educación, creador de contenido activo a través de TikTok @carlosjulian_mx

Estos temas te pueden interesar

    82 Deja tu comentario

  1. Calcular el cambio De energía interna de un sistema Que absorbe 170 joule Y realiza 72 joule de trabajo sobre su producto?
    AYUDENME NO LE ENTIENDO

    1. Nico lopez dice:

      Primera ley de la termodinámica variación de energía interna = variación de calor + variación de trabajo como el calor entra y el trabajo sale los signos serian + y - respectivamente dando como resultado 98J de variacion en la energia interna de tu sistema

    2. venito camelas dice:

      170J x (1Cal/4.185J) = 40.62Cal
      72J x (1Cal/4.185J)= 17.2Cal
      e= 17.2Cal/40.62Cal= 0.42 x 100 = 42%

    3. Fernanda dice:

      En realidad, se utilizaría en este caso un ejercicio de la primer ley de la termodinámica aplicándose que: Como el calor (170J) se absorbe, es positivo, y el trabajo (72J) se realiza sobre el producto, es negativo. Por ende:

      △U = △Q - △W
      △U = 170J - (-72J)
      △U = 170J + 72J
      △U = 242J

      Aquí encontrarás la definición y algunos ejemplos: http://158.69.198.76/leyes-de-la-termodinamica/

      1. Gracias Fernanda por tu comentario.

        Saludos

        1. isabel dice:

          me puede ayudar con tres ejercicios de eficiencia gracias!!!

          1. isabel dice:

            resueltos gracias

          2. Ila dice:

            Una máquina térmica opera entre dos depósitos a 800 y 20 ºC. La mitad de la
            potencia desarrollada por la máquina térmica se usa para operar una bomba de calor de
            Carnot que quita calor del entorno frío a 2 ºC y lo transfiere a una casa que se mantiene
            a 22 ºC. Si la casa pierde calor a razón de 62000 kJ/h, determinar:
            a) El COP de la bomba de calor.
            b) La tasa mínima de suministro de calor a la máquina térmica, necesaria para
            mantener la casa a 22 ºC.

            Alguien me podría ayudar a solucionarlo, por favor? Gracias...

    4. ISAELINA SERRANO dice:

      Me puede ayudar con una tarea

  2. Franzisco dice:

    disculpa en el segundo ejercicio dice 5.6x10^8 cal y al dar los datos diste esto Q1=5.8x10^8 cal.

    1. Resuelto francisco, hemos modificado el problema.

      1. Ayúdame en el mío esta abajo

  3. eder dice:

    Una máquina térmica de Carnot recibe calor de un depósito a 1.700 °F a razón de 700 Btu/min, y rechaza el calor de desecho al aire ambiente a 80 °F. Toda la potencia producida por la máquina térmica se usa para accionar un refrigerador que quita calor del espacio refrigerado a 20 °F y lo transfiere al mismo aire ambiente a 80 °F. Determine a) la tasa máxima de remoción de calor del espacio refrigerado y b) la tasa total de rechazo de calor al aire ambiente.

  4. jordy oropeza dice:

    tengo esa duda tambien porque ahi te ponen que 1cal= 4.20 , te ponen que 25200j es igual a 6000 cal el resultado del primer ejemplo me da 0.246 osea 24%

    1. Hola Jordy, estás en toda la razón.

      En este ejemplo estamos tomado a 1 cal = 4.20 J, entonces haciendo la relación nos sale como 6000 calorias el resultado, pero si asumimos lo que dice el problema 2, que puede variar también.

      $latex \displaystyle 25200J\left( \frac{1cal}{4.185J} \right)=6021.51cal$

      Aplicando en la fórmula:

      $latex \displaystyle e=\frac{8000cal-6021.51cal}{8000cal}=0.2473$

      Entonces tendríamos:

      $latex \displaystyle ef=0.2473x100=24.73%$

      Qué sería nuestra eficiencia en porcentaje.

      Saludos

      1. Ivan dice:

        Gracias por todo lo explicado me parecio muy didactico y con ejemplos faciles de entender.

  5. mari dice:

    una duda en el primer ejercicio como sustituyesen la formula e=Q1-Q2 si esta calorías y me marca q tiene q ser en joules
    Q1

    1. Simplemente haces la conversión Mari!

      Recuerda que:

      $latex \displaystyle 1cal=\frac{4.185J}{1cal}$

      Eso quiere decir, que las calorías que tienes, las tendrás que multiplicar por 4.185, para obtenerlo en Joules.

      Saludos

      1. Rocio dice:

        Carlos me puedes ayudar en un ejercicio por favor.

      2. Ximenna Carrillo dice:

        holaaa me podrias ayudar con un ejercicio?:(

        1. Ximenna!

          Usa nuestro servicio de "ayuda con tu tarea" . Escríbenos a [email protected]

        2. ISAELINA SERRANO dice:

          Me puede ayudar con una tarea

      3. jose dice:

        pusiste en los ejercicios que 1 cal equivalia a 4.2J

    2. Any dice:

      Un mol de hidrógeno se encuentra inicialmentea una presión de 2 atm y a la temperatura de
      10ºC. Cuál será la variación de entropía del oxígeno si se lo calienta hasta 100 °C y comprime
      hasta 4 atm.

    3. SRGHESRHY dice:

      PUES POR QUE LA IPOTENUSA ELEVADO AL CUADRADO DA EL VALOR DE LA TEMPERATURA DEBIDO A QUE DICHO VALOR ES MAYOR A LA TEMPERATURA PREVISTA POR LO Q SE REEMPLAZA UN VALOR MENO RPOR OTRO MAYOR PARA QUE LOS VALORES DE CANCELEN Y QUE NEUTRO

    4. Tania Rodríguez dice:

      Me pueden ayudar con estos ejercicios por favor Lo nesecito enserio con procedimiento si pueden
      4- Un motor efectúa un trabajo de 3400J y expulsa 5430J de calor.
      Calcular :
      A. Cuanto calor se debe aportar al motor por cada ciclo
      B. Eficiencia térmica?

      5-Cuál es la eficiencia de una máquina térmica a la cual se le suministrarán 7 000 calorías para obtener 35 200 Joules de calor de salida? 1 caloría = 4,2J
      Si alguien sabe me ayuda por favor

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Tu puntuación: Útil

Subir
Únete a nuestra comunidad en WhatsApp – Aprende Matemáticas y Física desde Cero